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Summary

 

Neutrophils are relatively insensitive to the anti-inflammatory actions of con-
ventional chemotherapeutic agents, including corticosteroids, emphasizing
the requirement for novel pharmacological strategies to control the poten-
tially harmful proinflammatory activities of these cells. In the case of com-
monly-occurring inflammatory diseases of the airways, the neutrophil is the
primary mediator of inflammation in conditions such as chronic obstructive
pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, bron-
chiectasis and non-eosinophilic bronchial asthma. Recent insights into the
mechanisms utilized by neutrophils to restore Ca

 

2

  

++++

 

 homeostasis following
activation with Ca

 

2

  

++++

 

-mobilizing, proinflammatory stimuli have facilitated the
identification of novel targets for anti-inflammatory chemotherapy in these
cells. The most amenable of these from a chemotherapeutic perspective, is the
cyclic AMP-dependent protein kinase-modulated endomembrane Ca

 

2

  

++++

 

-
ATPase which promotes clearance of the cation from the cytosol of activated
neutrophils. Second generation type 4 phosphodiesterase inhibitors and ade-
nosine receptor agonists operative at the level of subtype A2A adenosine
receptors, which are currently undergoing clinical and preclinical assessment
respectively, hold promise as pharmacologic modulators during the restora-
tion of Ca

 

2

  

++++

 

  homeostasis. If this promise is realized, it may result in novel che-
motherapeutic strategies for the control of hyperacute and chronic
inflammatory conditions in which neutrophils are primary offenders. Alter-
native, potential future targets include the Na

  

++++

 

, Ca

 

2

  

++++

 

-exchanger and store-
operated Ca

 

2

  

++++

 

 channels, which cooperate in the refilling of intracellular Ca

 

2

  

++++

 

stores.
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Introduction

 

The destructive power of activated neutrophils is well recog-
nized, with neutrophil-mediated tissue injury contributing
significantly to the pathogenesis of numerous diseases. This
review is focused on Ca

 

2

 

+

 

 handling by activated neutrophils,
with special emphasis on our current understanding of res-
toration of Ca

 

2

 

+

 

 homeostasis, as well as emerging anti-
inflammatory strategies targeting Ca

 

2

 

+

 

 fluxes in activated
neutrophils.

 

Neutrophil-mediated tissue injury: reasons for 
concern

 

The destructive power of activated neutrophils

 

The crucial involvement of polymorphonuclear leucocytes,
predominantly neutrophils, in host defence is underscored
by the relative abundance of these cells, with approximately
50 billion circulating in the bloodstream [1]. Following
extra-vasation, neutrophils attracted to sites of tissue inflam-
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mation by chemotaxins internalize microbial pathogens.
Inside the phagosome these are targeted and destroyed by
toxic reactive oxidants and serine proteases released into the
phagolysosome. Production and/or release of these toxic oxi-
dants and proteases by neutrophils is stringently controlled
to protect surrounding cells and tissues [2], but may be
excessive as a result of inappropriate activation and necrosis.
Excessive and/or protracted activation of neutrophils during
hyperacute and chronic inflammatory disorders predisposes
to tissue injury. Important examples of inflammatory con-
ditions in which the neutrophil is the primary offender are
shown in Table 1.

Notwithstanding the cardiovascular system, the predom-
inance of inflammatory airways disorders shown in Table 1
demonstrates the susceptibility of the lung to neutrophil-
mediated injury. The lung is clearly a primary target for
neutrophil recruitment and activation, which in turn con-
tributes to the pathogenesis of conditions such as chronic
obstructive pulmonary disease (COPD) [3], asthma [4] and
cystic fibrosis [5].

 

Corticosteroids and neutrophils

 

Few currently available therapeutic agents, including
corticosteroids, effectively down-regulate neutrophil pro-
inflammatory activity. Insensitivity to corticosteroids may
therefore be a feature of those disorders in which the neu-
trophil is the predominant inflammatory cell type.

The relative insensitivity of neutrophils to corticosteroids
is attributable to a combination of mechanisms. First, many
of the proinflammatory activities of these cells [production
of reactive oxidants, release of granule polypeptides, gener-
ation of prostanoids, eicosanoids and platelet activating
factor (PAF)] occur within seconds of activation and are
independent of 

 

de novo

 

 protein synthesis. Secondly, neutro-
phils which are now recognized to be an important source of
newly synthesized cytokines [6,7], particularly interleukin
(IL)-8 and tumour necrosis factor (TNF)-

 

a

 

, contain com-
paratively high levels of the functionally inactive beta isoform
of the glucocorticoid receptor (GR), the synthesis of which is
further up-regulated on exposure of the cells to IL-8 [8], ren-
dering them even less corticosteroid-sensitive. Moreover,
neutrophils, unlike other types of immune and inflammatory
cells, have been reported to be relatively insensitive to the
apoptosis-inducing actions of corticosteroids [9,10].

Clearly, the design and development of novel, neutrophil-
directed anti-inflammatory, chemotherapeutic strategies is a
priority.

 

Calcium and neutrophils

 

Receptor-mediated transient increases in cytosolic Ca

 

2

 

+

 

precede, and are a prerequisite for the activation of the
proinflammatory activities of neutrophils. Ca

 

2

 

+

 

-dependent
functions include activation of the membrane-associated
superoxide-generating electron-transporter, NADPH oxi-
dase, adhesion to vascular endothelium, degranulation, acti-
vation of phospholipase A

 

2

 

 and synthesis of IL-8. Because of
this critical dependence of activation of the proinflammatory
activities of neutrophils on Ca

 

2

 

+

 

, the mechanisms utilized by
these cells to both mobilize and dispose of the cation have
been identified as potential targets for anti-inflammatory
chemotherapy.

 

Calcium handling by activated neutrophils

 

Mobilization of Ca

 

2

  

++++

 

Intracellular Ca

 

2

 

+

 

 in neutrophils is reportedly stored in spe-
cialized storage vesicles termed calciosomes [11]. This may,
however, be somewhat of an oversimplification as there
appear to be at least two distinct cellular locations for Ca

 

2

 

+

 

stores in neutrophils that may have differential involvement
in activation of proinflammatory functions, and may utilize
different molecular/biochemical mechanisms of Ca

 

2

 

+

 

 mobi-
lization [12]. One site is located peripherally under the

 

Table 1.

 

Examples of clinical disorders associated with neutrophil-

mediated tissue injury and organ dysfunction classified according to the 

predominant system involved.

Respiratory system Acute respiratory distress syndrome

Bronchiectasis

Cystic fibrosis

Chronic obstructive pulmonary disease

Idiopathic pulmonary fibrosis

Hypersensitivity pneumonitis

Pulmonary vasculitides

Non-eosinophilic bronchial asthma

Goodpasture’s syndrome

Wegener’s granulomatosis

Silicosis

Cardiovascular system Systemic inflammatory response and

multi–organ dysfunction syndromes

Immune complex-mediated vasculitides

of infective and non-infective origin

Acute coronary syndromes

Ischaemia-reperfusion injury

Endocarditis

Genitourinary tract Immune complex-mediated

glomerulonephritis of both infective

and non-infective origin

Pyelonephritis

Gastrointestinal tract Inflammatory bowel disorders

Chronic active gastritis

Musculo-skeletal system Osteomyelitis

Rheumatoid arthritis

Gout

Articular chrondrocalcinosis
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plasma membrane and appears to be involved in the activa-
tion of 

 

b

 

2

 

-integrins, while the other is localized in the peri-
nuclear space and is mobilized by chemoattractants such as
the synthetic tripeptide, N-formyl-L-methionyl-L-leucyl-L-
phenylalanine (FMLP) [12]. Mitochondria may also serve as
calcium-storage organelles [13], with neutrophils possessing
a more extensive mitochondrial network than previously
recognized [14].

The molecular/biochemical mechanisms involved in Ca

 

2

 

+

 

mobilization following chemoattractant receptor-mediated
activation of neutrophils are well characterized. Leucocyte
membrane receptors for chemoattractants, including FMLP,
C5a, leukotriene B

 

4

 

, PAF and chemokines, belong to the 7-
transmembrane, G-protein-coupled family of receptors.
Occupation of these receptors, which are controlled by var-
ious G

 

a

 

 and G

 

bg

 

 subunits, results in activation of the 

 

b

 

 iso-
forms of phospholipase C which in turn mediate production
of inositol-1,4,5-triphosphate (IP

 

3

 

) by hydrolysis of phos-
phatidylinositol 4,5 biphosphate [15,16]. IP

 

3

 

 interacts with
Ca

 

2

 

+

 

-mobilizing receptors on intracellular storage vesicles,
resulting in discharge of the cation into the cytosol. These
events are extremely rapid, occurring within a few seconds of
ligand-receptor binding, and result in a five to 10-fold
increase in the cytosolic free Ca

 

2

 

+

 

 concentration above a basal
value of about 100 n

 

M

 

 [17]. Only modest increases in IP

 

3

 

, of
around 15% of maximal, are required to cause complete
mobilization of intracellular Ca

 

2

 

+

 

 [18,19]. The peak increase
in cytosolic Ca

 

2

 

+

 

 is followed by a rapid, progressive decline in
cytosolic Ca

 

2

 

+

 

 with a return to basal values within several
minutes. The rate of decline in the concentration of cytosolic
Ca

 

2

 

+

 

 appears to be governed by two mechanisms. First, the
efficiency of the systems which promote clearance of Ca

 

2

 

+

 

from the cytosol [20,21] and secondly, those which regulate
the time of onset, rate and magnitude of influx of extracel-
lular cation [22].

 

Clearance of Ca

 

2

  

++++

 

 from the cytosol of activated 
neutrophils

 

Following activation of neutrophils, restoration of Ca

 

2

 

+

 

homeostasis is essential to prevent Ca

 

2

 

+

 

 overload and hyper-
activity of the cells. This is achieved by rapid clearance of
Ca

 

2

 

+

 

, primarily through the action of two adenosine triph-
osphate (ATP)-driven pumps operating in unison. These are
the plasma membrane Ca

 

2

 

+

 

-ATPase, which is a Ca

 

2

 

+

 

-efflux
pump, and the endo-membrane Ca

 

2

 

+

 

-ATPase which rese-
questers the cation into intracellular stores [23]. In activated
neutrophils, these two Ca

 

2

 

+

 

 pumps appear to contribute
more or less equally to the clearance of cytosolic Ca

 

2

 

+

 

 [24,25].
The plasma membrane Ca

 

2

 

+

 

-ATPase of neutrophils is
modulated by calmodulin, acidic phospholipids and polyun-
saturated fatty acids which shift the pump to a higher-
affinity state for Ca

 

2

 

+

 

, resulting in enhanced maximal velocity
[26]. In the case of FMLP-activated neutrophils, a dramatic
and transient efflux of Ca

 

2

 

+

 

 immediately follows release of

the cation from stores, proceeds over a 30-s time course and
results in discharge of about 50% of Ca

 

2

 

+

 

 mobilized from
stores [24,25].

Activation of neutrophils with FMLP also results in imme-
diate, transient activation of adenylate cyclase [27,28]. This
results from the interaction of adenosine, generated by
dephosphorylation of adenylates, with G-protein/adenylyl
cyclase-coupled adenosine receptors (AR) of the A

 

2A

 

 receptor
subtype  on  the  neutrophil  membrane  [27,28],  leading
to activation of adenosine 3

 

¢

 

,5

 

¢

 

-cyclic monophosphate
(cAMP)-dependent protein kinase A (PKA). PKA in turn
up-regulates the Ca

 

2

 

+

 

 sequestering/resequestering activity
of  the  endomembrane  Ca

 

2

 

+

 

-ATPase  by  phosphorylation of
the regulatory polypeptide, phospholamban [29]. The
endomembrane Ca

 

2

 

+

 

-ATPase contributes to Ca

 

2

 

+

 

 clearance
from the cytosol of activated neutrophils by promoting rese-
questration of cation mobilized from stores, as well as
sequestration of incoming Ca

 

2

 

+

 

 during store-operated influx
[30–32].

Operating in harmony, these two Ca

 

2

 

+

 

 pumps (plasma
membrane and endomembrane) appear to be the primary
contributors to clearance of cytosolic Ca

 

2

 

+

 

 in activated
neutrophils.

 

The role of membrane depolarization

 

Efficient clearance of Ca

 

2

 

+

 

 by the plasma membrane and
endomembrane Ca

 

2

 

+

 

-ATPases is facilitated by the membrane
depolarizing action of NADPH oxidase which limits the
influx of extracellular Ca

 

2

 

+

 

. NADPH oxidase is the
membrane-associated, electron-transporting, superoxide-
generating system of phagocytes, which undergoes Ca

 

2

 

+

 

-
dependent activation during exposure of the cells to
chemoattractants, cytokines and opsonized antigens. The
dramatic decrease in membrane potential that accompanies
activation of NADPH oxidase, and which is coincident with
release of Ca

 

2

 

+

 

 from neutrophil intracellular stores, efflux of
the cation and activation of superoxide production, has been
attributed to the electrogenic activity of the oxidase [22], as
well as to the action of a rapidly activated H

 

+

 

 conductance
with resultant influx of H

 

+

 

 [33]. This type of abruptly occur-
ring membrane depolarization has been shown to limit the
influx of extracellular Ca

 

2

 

+

 

 [34,35]. When the cells are depo-
larized, the driving force for entry of Ca

 

2

 

+

 

 is abolished
because the electrical component of the electrochemical gra-
dient promoting Ca

 

2

 

+

 

 entry is markedly reduced.

 

Membrane repolarization and store-operated influx
of Ca

 

2

  

++++

 

The uptake of extracellular Ca

 

2

 

+

 

 into FMLP-activated neu-
trophils is a delayed event, with net influx becoming
detectable only at around 1 min after addition of the
chemoattractant, and proceeding gradually over a 5-min
time-course. This type of Ca

 

2

 

+

 

 influx is characteristic of
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store-operated mechanisms, being secondary to emptying of
intracellular Ca

 

2

 

+

 

 stores and necessary for store refilling.
Interestingly, the time-course of influx of extracellular

Ca

 

2

 

+

 

 is superimposable on that of membrane repolarization,
suggestive of a mechanistic interrelationship between these
two events. It has been proposed that membrane repolariza-
tion in activated eosinophils is mediated by an NADPH
oxidase-associated H

 

+

 

 extrusion channel which, being elec-
trogenic, results in repolarization of the cell membrane
[33,36].

Notwithstanding the crucial role of proton efflux in the
regulation of intracellular pH, additional mechanisms may
contribute to membrane repolarization in activated neutro-
phils. Importantly, charge compensatory mechanisms may
vary according to the nature of the signal transduction path-
ways utilized. Membrane repolarization in chemoattractant-
activated neutrophils is associated with up-regulation of the
activity of the electrogenic plasma membrane Na

 

+

 

/Ca

 

2

 

+

 

exchanger operating in reverse mode [37].
Treatment of activated neutrophils with KB-R7943, a

selective inhibitor of the Na

 

+

 

/Ca

 

2

 

+

 

 exchanger operating in
reverse mode [38], significantly inhibited the rate and mag-
nitude of recovery of the membrane potential towards rest-
ing levels (Fig. 1). Importantly, inhibition of membrane
repolarization by KB-R7943 is associated with marked atten-
uation of store-operated Ca

 

2

 

+

 

 uptake by these cells, suggest-
ing that these processes are interdependent [37].

The role of membrane repolarization in regulating the
rate of calcium influx is further supported by the observation
that addition of the NADPH oxidase inhibitor, diphenylenei-
odonium chloride (DPI) to neutrophils 1 min after FMLP
potentiated the rate and magnitude of repolarization
(Fig. 1), with a corresponding increased rate of store-
operated Ca

 

2

 

+

 

 influx [37].

Recently, high conductance Ca

 

2

 

+

 

-activated K

 

+

 

 channels
have been elegantly demonstrated to participate in charge
compensation following activation of neutrophils with
phorbol esters and opsonized microorganisms. The resultant
electrogenic K

 

+

 

 efflux (influx in the case of phagocytic vac-
uoles) is a prerequisite for intravacuolar activation of anti-
microbial proteases [39,40].

 

Store-operated Ca

 

2

  

++++

 

 channels and neutrophils

 

Although the precise molecular identity of the store-
operated Ca

 

2

 

+

 

 channels (SOCs) operative in human neutro-
phils and other cell types has not been conclusively
established, one particular family of non-voltage-activated
Ca

 

2

 

+ channels, the family of transient receptor potential
(TRP) channels has attracted considerable interest. These
channels have been the subject of several recent reviews
[41,42], and their salient features with respect to neutrophils
can be summarized as follows:

• There are three major subgroups within the TRP gene
family, the proposed nomenclature for these being TRPC,
TRPV and TRPM, each of which currently contains seven
(TRPC 1, 2, 3, 4, 5, 6, 7) five (TRPV 1, 2, 4, 5, 6) and four
(TRPM 1, 2, 5, 7) members, respectively [42].

• The presence of members of all three TRP channels has
been demonstrated in leucocytes and leucocytic cell lines,
with mRNA for TRPC6 having been demonstrated in
human neutrophils, eosinophils and lymphocytes [42]. In
addition, the ADP-ribose-activated long TRP channel 2
(LTRP 2) is expressed on neutrophil membranes and
patch-clamp electrophysiological studies have demon-
strated Na+ and Ca2+ ion conductivity across these channels
[43].

• Overexpression of TRPs in mammalian cells has been
reported to result in enhancement of store-operated Ca2+

entry in many, but not all studies [41,44], while reduction
of TRP expression using antisense strategies has been
shown to decrease store-operated uptake of the cation
[41].

• As described below, filling of intracellular Ca2+ stores
through TRPs may involve physical interaction of the
channel proteins with IP3 receptors on storage vesicles,
compatible with a conformational coupling mechanism of
depletion-activated Ca2+ entry [41,45].

Although store-depletion activated mechanisms predom-
inate during the refilling of intracellular Ca2+ stores, other
pathways for Ca2+ entry may exist as chemokines utilizing
CXC4, CCR1 and CCR5 on neutrophils are able to stimulate
Ca2+ influx without Ca2+ release from storage vesicles [46].

Interestingly, in HEK 293 cells, a physical association has
been reported to exist between TRPC3 channels and the Na+/
Ca2+ exchanger, with the TRPC3-mediated Ca2+ entry being
dependent on the exchanger operating in reverse mode [47],
as has been reported for neutrophils [37].

Fig. 1. The effects of KB-R7943 (5 mM) and DPI (5 mM) on the N-

formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) (1 mM)-

activated (Ø) membrane repolarization responses of human neutro-

phils. The test agents were added to the cells 1 min after FMLP ( ) at 

the time of maximal depolarization.

F
lu

or
es

ce
nc

e 
in

te
ns

ity

2 min

10 mV

C ontrol

5 mM DPI

5 mM KB-R7943

FMLP

AGENT



CA2+ handling by activated neutrophils

© 2005 British Society for Immunology, Clinical and Experimental Immunology, 141: 191–200 195

How do calcium storage vesicles ‘communicate’ with 
plasma membrane store-operated calcium channels?

Several mechanisms have been proposed to explain the acti-
vation of Ca2+ entry by store depletion and these have been
the topic of several recent reviews [41,48].

Briefly, the conformational coupling model proposes that
intracellular Ca2+ stores are located in close proximity to the
plasma membrane, enabling physical coupling between the
IP3 receptors of the stores and the proteins of the Ca2+ entry
channels. When the IP3 receptors open during intracellular
Ca2+ mobilization, the resultant conformational change in
the receptor protein activates the Ca2+ entry channels, lead-
ing to Ca2+ influx [41,45]. In human neutrophils, the mag-
nitude of influx of Ca2+ appears to be related directly to the
intracellular IP3 concentration [49].

The soluble intracellular messenger, calcium influx factor
(CIF), may diffuse from the cytosol to activate plasma mem-
brane calcium channels, triggering Ca2+ entry. The bioactive
sphingolipid, sphingosine-1-phosphate, has been reported
to mimic closely the actions of CIF [50], but this remains to
be established conclusively [51].

More recently, additional mechanisms have been pro-
posed. These include (1) a role for mitochondria in Ca2+ sig-
nalling [52], (2) participation of the cytoskeleton during
calcium influx [53], (3) a direct mass-action mechanism
[54] and (4) calcium-sensing proteins (CALPs) that may
modulate the activity of calcium channels [55].

The various mechanisms utilized by chemoattractant-
activated neutrophils to mobilize intracellular Ca2+ and to
restore Ca2+ homeostasis are summarized in Fig. 2.

Ca2+ homeostasis as a target for neutrophil-directed 
anti-inflammatory chemotherapy

Recent insights into the mechanisms utilized by neutrophils
to restore Ca2+ homeostasis following activation with
chemoattractants have enabled the identification of novel,
potential targets on these cells for anti-inflammatory thera-
peutic agents. These targets, as well as the pharmacological
strategies which may be used to achieve anti-inflammatory
effects, are shown in Table 2.

Cyclic AMP-elevating agents

Cyclic AMP-elevating agents have been reported to interact
directly with immune and inflammatory cells, including
neutrophils, resulting in cAMP-mediated attenuation of the
responses of these cells to various proinflammatory stimuli
[56]. Importantly, these agents have been demonstrated to
inhibit the activity of phospholipase A2, as well as the pro-
duction of a range of proinflammatory mediators including
cytokines (especially tumour necrosis factor), prostaglan-
dins, leukotrienes, PAF, reactive oxidants and release of
granule-derived enzymes. Cyclic AMP-elevating agents also

attenuate b2-integrin activation/expression by neutrophils,
eosinophils, monocytes, macrophages and lymphocytes
[56,57].

Antagonists of depletion-activated store-refilling in 
neutrophils

Interference with the refilling of depleted Ca2+ stores in
activated neutrophils represents an attractive target for anti-
inflammatory chemotherapy, because this would be expected
to prevent activation of the proinflammatory activities of the
cells on re-exposure to the same or a different receptor-

Fig. 2. A model of the mechanisms used by N-formyl-L-methionyl-L-

leucyl-L-phenylalanine (FMLP)-activated human neutrophils to mobi-

lize Ca2+ from intracellular stores, and to restore Ca2+ homeostasis. Inter-

action of the chemoattractant (�) with G-protein/phospholipase C 

(PLC)-coupled membrane receptors (V) results in generation of inosi-

tol-1,4,5-triphosphate (IP3) which, in turn, activates release of Ca2+ from 

intracellular stores . The resultant transient elevation in cytosolic 

Ca2+ precedes, and is a prerequisite for, activation of several important 

proinflammatory activities of the cells. Clearance of the cation from the 

cytosol is achieved in part by efflux via the plasma membrane Ca2+-

ATPase (PMCA) . Activation of the cells is also accompanied by 

synthesis and release of adenosine (�, ) which interacts with plasma 

membrane adenosine subtype A2A receptors (–[) coupled to adenylate 

cyclase (AC) and activation of cAMP-dependent protein kinase A 

(PKA). PKA in turn up-regulates the endomembrane Ca2+-ATPase (�) 

on intracellular Ca2+ stores, leading to resequestration of the cation . 

Refilling of stores is also mediated through uptake of extracellular Ca2+ 

via store-operated channels which are thought to be coupled to the IP3 

receptor , with uptake of the cation being antagonized by the mem-

brane depolarizing actions of NADPH-oxidase , and facilitated by the 

repolarizing actions of electrogenic ion transporters such as the Na+, 

Ca2+-exchanger, and H+ and K+ efflux .
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dependent mediator of Ca2+ mobilization. Calcium reuptake
by stimulated neutrophils increases the cytosolic Ca2+ con-
centration near the plasma membrane which facilitates
degranulation and calpain activation [52], as well as b2-inte-
grin-mediated adhesion to vascular endothelium [58].
Antagonists of calcium influx may therefore attenuate these
neutrophil responses. Agents which fall into this category
include, first, those which inhibit the membrane repolariza-
tion responses of activated neutrophils, particularly inhibi-
tors of the Na+, Ca2+-exchanger, and secondly, antagonists of
store-operated Ca2+ channels such as itraconazole [59].

The therapeutic potential of anti-inflammatory 
strategies directed at Ca2+ metabolism

Beta-adrenergic agonists

Beta-adrenergic agonists (b-agonists) bind to b-receptors on
inflammatory cells, including neutrophils, with resultant ele-
vation of intracellular cAMP and inhibition of the proin-
flammatory activities of these cells in vitro [60,61]. In the
clinical setting, numerous trials have supported the use of
long-acting b-agonists (formoterol and salmeterol) in con-
junction with inhaled corticosteroids, for patients with
asthma and COPD [62–64].

Currently, the therapeutic potential of b-agonists, at clin-
ically relevant concentrations, in experimental models of
acute lung injury (ALI) [65] and in critically ill patients with
the acute respiratory distress syndrome (ARDS) has gener-
ated interest [66,67].

Second-generation type 4 phosphodiesterase 
(PDE) inhibitors

PDE is a generic term that encompasses at least 11 distinct
enzyme families (isotypes) that hydrolyse cAMP and/or

cGMP, representing the only cellular pathway for the degra-
dation of these cyclic nucleotides. Cyclic AMP-specific PDE4
is present in most immune and inflammatory cells, with the
4B2 subtype being the predominant PDE species in human
neutrophils and monocytes [68,69]. Consequently, there has
been considerable interest in PDE4-selective inhibitors as a
potential therapy for acute and chronic inflammatory dis-
eases, including ALI, bronchial asthma and COPD, and these
agents have indeed been shown to exert significant anti-
inflammatory activity in various animal models [70–72] and
in clinical trials in humans [73], several of which are cur-
rently in progress. These involve compounds designed to
have an improved therapeutic window such as cilomilast
[c-4-cyano-4-(3-cyclopentoxyl-4-methoxyphenyl-r-1-cyclo-
hexane carboxylic acid)], also known as Ariflo™ or SB
207499, which has been shown to improve pulmonary func-
tions and symptoms in patients with COPD [74]. Impor-
tantly, the anti-inflammatory effects of cilomilast have been
confirmed in patients with COPD in whom this agent
significantly decreased the numbers of inflammatory cells
determined by means of serial bronchial biopsies [75].

Another selective PDE4 inhibitor, roflumilast (3-cyclo-
propylmethoxy-4-difluoromethoxy-N-[3,5-di-chloropyrid-
4-yl]benzamide), inhibits neutrophil proinflammatory
responses in vitro [76] and has also demonstrated efficacy in
the management of exercise-induced asthma [77] and
COPD [73].

Adenosine receptor agonists

The well-recognized broad-spectrum anti-inflammatory
actions of adenosine and its analogues are for the most part
mediated through activation of the A2AR subtype. This is cer-
tainly the case for neutrophils, monocytes, mast cells and T
lymphocytes [30,78]. The A2AR subtype is a G-protein (Gs)-
coupled receptor linked to activation of adenylyl cyclase,

Table 2. Mechanisms involved in mobilization of Ca2+ and restoration of Ca2+ homeostasis as potential targets for neutrophil-directed anti-inflamma-

tory chemotherapy.

Target Function

Pharmacological anti-

inflammatory strategy

Examples of pharmacological

agents/antagonists

Phospholipase C Ca2+ mobilization Inhibit: reduces Ca2+ U73122

mobilization

Plasma membrane Ca2+ clearance Potentiate: down-regulates Acidic phospholipids

Ca2+-ATPase proinflammatory activities Polyunsaturated fatty acids

NADPH oxidase Exclusion of

extracellular Ca2+
Potentiate: prevents store

refilling and reactivation of cells

Clofazimine

Endomembrane Ca2+ clearance Potentiate: down-regulates b-Adrenoreceptor agonists

Ca2+-ATPase proinflammatory activities Phosphodiesterase inhibitors

Adenosine receptor agonists

Na+/Ca2+-exchanger Facilitates uptake of Inhibit: prevents store refilling KB-R7943

Ca2+ and reactivation of cells SEA0400

Store-operated Ca2+

channels

Mediates uptake of

Ca2+
Block: prevents store-refilling

and reactivation of cells

Itraconazole
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resulting in cAMP-mediated anti-inflammatory activity
[79,80].

The prototype A2AR agonist, CGS 21680 (2(4-[(2-
carboxyethyl)phenyl] ethylamino)-5¢-N-ethylcarboxamido
adenosine), although lacking the required receptor specific-
ity for therapeutic application, together with ZM 241385
(4-(2-[7-amino-2-(2-fury 1)[1,2,4)triazolo[2,3-a][1,3,5]tri-
azin-5-yl aminoethyl phenol), a highly selective antagonist of
A2ARs, have been useful in probing the presence and anti-
inflammatory properties of A2ARs in immune and inflamma-
tory cells [81,82]. CGS 21680 has also proved useful in the
development of novel, experimental A2AR agonists with
improved receptor specificity and anti-inflammatory prop-
erties [79,83].

The anti-inflammatory potential of adenosine, adenosine
A2A receptor agonists, adenosine precursors and enzyme
inhibitors which elevate adenosine levels holds promise in
the management of a range of inflammatory disorders
including asthma, sepsis, auto-immune diseases, myocardial
ischaemia and reperfusion injury [82,84–86]. The adenosine
A2AR  agonists,  CGS  21680  and  4-[3-[6-amino-9-(5-
ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-
purin-2-yl]-prop-2-ynyl]-cyclohexanecarboxylic acid
methyl ester (ATL146e), exhibited significant anti-inflam-
matory activity in animal models of allergic asthma [87] and
sepsis [88], respectively. During clinical trials in patients
with acute myocardial infarction, adenosine significantly
reduced infarct size [89]. Potent A2A receptor agonists are
currently being developed and the efficacy of these agents in
the treatment of COPD remains to be established [90]. The
widespread anatomical distribution of A2ARs increases the
potential for side effects, but this may be overcome by selec-
tive topical application in the lung, or by combining A2AR
agonists with selective PDE4 inhibitors, or corticosteroids,
which may enable reductions in the dosages of both types of
agent [30,91].

Inhibitors of the Na++++/Ca2++++-exchanger

KB-R7943 has proved to be a useful experimental agent to
probe the involvement of the Na+, Ca2+-exchanger in regu-
lating the intracellular Ca2+ concentration in a variety of cell
types  such  as  ventricular  myocytes,  as  well  as  the  validity
of the exchanger as a potential  target for the prevention
and therapy of ischaemia-related cardiovascular damage
and dysfunction [92]. SEA0400 (2-[4,2,5-difluorophe-
nyl)methoxy]phenoxy]-5-ethoxyaniline), is a recently devel-
oped compound that appears to be a more potent and
selective inhibitor of the Na+/Ca2+-exchanger than KB-
R7943, and has been reported to be efficacious in animal
models of cerebral ischaemic injury [92,93].

The anti-inflammatory potential of inhibitors of the Na+/
Ca2+-exchanger, while extremely promising is, however, a
very new area of immunopharmacological research. Mean-
ingful progress will be dependent on identifying the

isoform(s) of the exchanger which are operative not only in
human neutrophils, but also in other types of immune and
inflammatory cells [94,95], as well as on the design and
development of isoform-specific inhibitors of the exchanger
which selectively target these cells.

Antagonists of store-operated Ca2++++ channels

As mentioned earlier, there is considerable interest in store-
operated Ca2+ channels as potential therapeutic targets [42].
The imidazole antimycotic, itraconazole, antagonizes store-
operated Ca2+ influx mechanisms in human neutrophils in
vitro [59], while the structurally related triazole, fluconazole,
improved survival in a limited number of critically ill
patients with septic shock, an effect not attributed to its anti-
fungal activity [96]. Clearly, selective and potent inhibitors
of the TRP channel family have therapeutic potential for a
range of inflammatory disorders. Although this field of
immunopharmacology is exciting and holds considerable
therapeutic promise, meaningful progress is, however,
dependent on target validation and on the design and syn-
thesis of selective pharmacological agents.

Phospholipase C (PLC) and NADPH oxidase

U73122, an inhibitor of PLC, has been shown in vivo to block
carrageenan-induced paw oedema and leucocyte accumula-
tion, as well as lipopolysaccharide-induced cellular infiltra-
tion and prostaglandin production in animal models [97].
Clofazimine, an antileprosy agent, potentiates NADPH oxi-
dase activity [98], but also possesses well-documented anti-
inflammatory actions [99], possibly reflecting the recognized
role of the oxidase in restraining Ca2+ influx [22,35,37,100].

Conclusions

Recent insights into the mechanisms utilized by activated
neutrophils to restore Ca2+ homeostasis have identified
potential novel targets for anti-inflammatory chemotherapy.
Foremost among these is the Ca2+ sequestering/resequester-
ing, cAMP-up-regulated endomembrane Ca2 ± ATPase
which is amenable to selective pharmacological manipula-
tion by second generation inhibitors of type 4 PDE, as well as
by selective agonists of subtype A2ARs. Other targets which
hold promise include the Na+/Ca2+-exchanger and Ca2+

uptake channels of the TRP family.
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